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ABSTRACT
The objective of the research project was a mathematical analysis of

multiparameter bifurcation problems which arise in the study of ordinary
differential equations, especially, the bifurcation of critical points of period
functions and the bifurcation of continuous families of periodic trajectories.

The focus of the first year of research was on bifurcations of critical points
of period functions and on bifurcation of limit cycles. The main results on
the bifurcation of critical points of the period function are the following: a
complete analysis of the number of local critical points of the period function
which can bifurcate near the origin in the spa-e of quadratic systems which
have a center at the origin, an analysis of the number of such critical points
of the period functicn which bifurcate in the class of second order scalar
differential equations of higher degree, and applications of these results to
the a.ialysis of two point nonlinear boundary value problems. For the limit
cycle bifurcations, quadratic perturbations of linear and qiuadratic systems
containing a linearizable center were analyzed. The main results are the fol-
lowing: In the linear case at most three unperturbed periodic trajectories
give birth to a family of limit cycles under perturbation. Of the four possible
quadratic families, one has the property that at most one unperturbed peri-
odic trajectory gives birth to a family of limit cycles, while in the remaining
families there are at most two such periodic trajectories.

The focus of the second year of research was on the bifurcation of con-
tinuous families of limit cycles in multiparameter time dependent systems.
The main results of this research are an analysis of the number and posi-
tions of the subharmonic solutions of periodically excited oscillations near
resonance when the unperturbed system has a limit cycle. These results give
a mathematical foundation to the phenomenon of frequency entrainment or
phase locking in a wide class of model equations. In particular, applications
are made to determine the subharmonic response of a class of van der Pol
oscillators.

During the time extension of the project, research on bifurcation of sub-
harmonic solutions was continued. The main results of this research are a
strong version of a subharmonic bifurcation theorem and several new results
on bifurcation from degenerate families. In addition, a new result on the
finiteness of the number of critical points of the period function for an an-
alytic system was obtained and an application was made to the finiteness
problem for two point nonlinear boundary value problems.
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1 Introduction

The main objective of the research project is a mathematical understanding
of the multiparameter bifurcations that occur in nonlinear systems of ordi-
nary differential equations, especially, in those classes of ordinary differential
_Ouaiuas used as nu l 0 t, dynamic physical processes. During the first year
of the research program the investigation concentrated on the acquisition of
basic knowledge about two types of bifurcations that are present in the analy-
sis of multiparameter systems when a complete classification of the dynamics
for all values of the parameters is required. These are the bifurcation of pe-
riod functions and the bifurcation of limit cycles from unperturbed planar
systems with a center. The motivation for studying these situations and the
results obtained were detailed in the First Annual Project Report. During
the second year of the research program we built upon the results and the
insights obtained during the first year and extended the research to the con-
sideration of forced oscillation problems. This line of inquiry has remained
th2 main topic for research for the remainder of the project. Again the re-
sults obtained during the second year are explained in the Second Annual
Project Report. The body of the present report consists of three sections.
The first two sections are edited versions of the two annual reports while the
third section explains the results obtained since the second annual report.
Current references to research articles resulting from this project are given
in §5 while invited presentations of these results are referenced in §6.

2 First Year of Research

Although realistic models of physical phenomena usually require many state
variables which are related by partial differential equations, detailed mathe-
matical analysis can only be accomplished when various simplifications are
made. In particular, truncations of series representations, special solutions,
and reduction to invariant manifolds often lead to ordinary differential equa-
tions which are low degree polynomials in a few of the state variables. Thus,
two dimensional systems of polynomial differential equations are a natural
environment for detailed mathematical analysis where a basic understanding
of the dynamics is important for later application to the original model equa-
tions. Since the full range of nonlinear phenomena seems to be prcscnt when
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the nonlinear terms are of order two, it is very natural to consider quadratic
plane systems as a test case. While this project is not confined to this case,
most of the work is presented in this context.

The research on period functions is conrerned with the following problem.
Consider an analytic plane system of differential equations SA,

i = f(x,y,A), ' = g(x,y,A), A E R'

which for each parameter value A contains a continuous one parameter family
of periodic trajectories whose inner boundary is the origin of the phase plane.
Further, assume there is a line segment (a Poincar6 section) E which is.
transverse to all of these periodic trajectories of S, for A near some A.. For
, the coordinate along E, the period function (c, A) '-f P( , A) assigns to the

periodic trajectory of Sx through its minimum period. The problem is to
describe the critical points of P as the parameter A varies. This problem is
connected with several applications. One of the most important of these is
the application to two point boundary value problems of Neumann type; the
natural two point boundary value problem which arises in the study of the
buckling of flexible rods. Our results on this problem are not yet complete.
At present, there are no general method3 which will determine the number
of critical points of the period function globally on its domain. However,
we have been able to give a complete analysis of the bifurcations which can
occur locally, i.e., near a stationary point which forms the inner boundary of
the family of periodic trajectories. We have applied this theory to all of the
centers which occur in quadratic systems as well as the centers in differential
systems which arise in second order "kinetic+potential" systems, i.e. systems
of the form

i+ x + A2x
2 + A3x 3 + + ANX N = 0,

when either there are no even order terms in the equation or when N < 6.
In each case we can obtain tight bounds on the number of critical points of
the period function which can arise near the the center as A is varied. For
example, in the quadratic case all bifurcations of the period function lead to
bifurcations of at most two local critical points of the period function and
in the case of the "kinetic+potential" systems with only odd order terms, if
N = 2n - 1 then there are at most n - 1 local critical points of the period
function which bifurcate. This work is published in the paper Bifurcation of
critical periods for plane vector fields.
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Perhaps the most important byproduct of our analysis of the critical
points of period functions is our exposition of a method for obtaining bi-
furcation results for the number of zeros of an arbitr ary analytic function
( , A) * F( , A) near = 0, A = A. when F and its partial derivatives with
respect to of all orders vanish at (0, A.). In the case of the period func-
tion, this arises when F( ,A) = Pt(',A) and the system EA at A = A. has
an isochronous center at the origin. Here, the Implicit Function Theorem
and the Weierstrass Preparation Theorem do not apply to F near (0, A.).
Pursuant to the methods we have developed to overcome this difficulty, one
is invariably lead to very lengthy calculations, especially, computations re-
lated to polynomial ideals. These computations are very efficiently carried
out with he use of a coinp-iter algebra system. Since there is much current
interest in the use of computer algebra in applied analysis, we decided to
promote the general method for finding the zeros of an analytic ualtiparam-
eter function near an infinite order zero and the attendant computer algebra
in a separate publication. The results will appear in the proceedings of the
important recent University of Cincinnati conference on Computer Assisted
Proofs in Analysis, in our paper On A Computer Algebra Aided Proof in

Bifurcation Theory.
For the bifurcation of limit cycles we again consider an analytic differential

equation system depending on a pacameter. But now, only the unperturbed
system (given at A = 0) is assumed to have a center surrounded by a one
parameter family of periodic trajectories. The problem is to determine the
number and position of those periodic trajectories surrounding the center of
the unperturbed system which are the limiting members of continuous fami-
lies of limit cycles which exist for the systems corresponding to small values
of A 54 0. This problem is classical. It arises in the applications whenever
the differential equation model is a perturbation of a conservative system. In
order to ascertain the response of the perturbed system, it is necessary to an-
alyze perturbation from centers, continuous families of periodic trajectories,
separatrix cycles , etc. Here, many of the main mathematical foundations for
the subject are well known, it is the application of these results to specific
systems which is of current interest. Again, these applications often require
extensive algebraic computations which are amenable to computer algebra.
Our experience with computer algebra systems gained in the first part of the
project proved very useful in our work on the oscillation problem. The main
results obtained to date are for the quadratic systems, although the tech-
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niques employed will certainly be applicable to other situations. We have
completely cataloged the number and position of the periodic trajectories

at which a family of limit cycles emerges from a linearizable center of any
quadratic system. For the quadratic systems, the linearizable center can be
linear, or one of four nonlinear families. We consider arbitrary quadratic
perturbations in each of the five cases and we show that at most three limit
cycle families emerge from the periodic trajectories surrounding the linear
center, at most one family emerges for one of the nonlinear cases and at
most two arise in each of the remaining cases. This bifurcation analysis is
carried out to all orders. Thus, the response of the system can be obtained,
even when degeneracies are present, for any smooth path in the parameter
space. This should be contrasted with the usual results which only consider
first order bifurcation in the direction of a line in the parameter space. The
notable extension provided by our work should prove valuable in the analysis
of problems where degeneracies can not be avoided or where the parameters
appear nonlinearly in the model equations. This research is published in the
paper Bifurcation of Limit Cycles from Quadratic Isochrones.

3 Second Year of Research

One aspect of nonlinear dynamics of prime importance is the determination
of the response of a nonlinear system to an excitation. This problem can
take many forms as the excitation may be an external force or a dynamic
change in some of the parameters of the system (a parametric excitation).
The stimulus can also be of several types. For example, the stimulus can
be impulsive, random or periodic. Each such situation leads to difficult and
important mathematical questions. While we have not sought to attack all
of these questions, our research is motivated by a desire to understand some
aspects of the applications of nonlinear dynamics from this perspective. In
particular, we have considered some important problems of this type that
arise naturally when a periodic excitation is applied to a dynamical system
whose free oscillation is a limit cycle.

For our analysis, we assume the unperturbed dynamical system is mod-
eled by an autonomous multiparameter ordinary differential equation with a
two dimensional state variable:

x=f(x,A), XER 2 , AERN.
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This system is further assumed to support a self sustained oscillation, i.e., a
periodic solution F with period T > 0. Next, we consider the application of
a periodic excitation

(x, t, A) - g(x, t,.A), X E R 2, t E R1, A E RI

where g is periodic of period 7, i.e., for all (x, t)

g(,. t + ,,A) = g(x, t, A)

and where the period is in resonance with the period of the unforced oscilla-
tion, i.e., there are positive integers n and m such that nT = m77. This leads
to the model equation for the excited system

= f(x, A) + g(x, t, A), x E R2 , A E RN.

The response of the system to the resonant periodic excitation is the flow
of this nonlinear system. Of particular interest are the periodic trajectories
of this flow. Our research project seeks to determine the existence of some
special periodic solutions, namely, the (sub)harmonic solutions of the differ-
ential equation for small values of the bifurcation parameter E, i.e., periodic
solutions each with period an integer multiple of 77, the period of the exci-
tation. If asymptotically stable subharmonics exist, nearby orbits in their
basins of attraction are said to be entrained to the subharmonic of the input
frequency or one says they are phase locked to this frequency.

In order to determine the subharmonics, we take the geometric approach
by considering an appropriate Poincar6 map. For this, we view a point

E R 2 as an initial value for the differential equation and, for fixed A, we let
t F-+ x(t, , E) denote the solution of the E dependent system starting at . The
parameterized Poincar6 map P is the function given by ( , c) " x(mq, , E).
Now, if o is on the periodic trajectory of the unperturbed system with
period T, then P( 0 , U) = 0. Thus, it is natural to define the displacement
function ( , f) := P(, ) - so that ( 0, 0) = 0 and the subharmonic
solutions correspond to the zeros of S for e $ 0. To be more precise we say
0 is a subharmonic branch point if 0 lies on the periodic trajectory of the

unperturbed system, there exists c0 > 0 and a continuous curve F -* a(c),
defined for IEl < co, such that a(0) = 0 and 6(a(e),e) =0 . This leads to
our mathematically precise formulation of the problem of the determination
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of the response of the dynamical system to the excitation: Find the number
and the position of the subharmonic branch points.

In order to find the subharmonic branch points we wish to use the Im-
plicit Function Theorem, but it turns out that the Jacobian derivative of 6
with respect to is singular at ( 0,0), so an immediate application of the
Implicit Function Theorem is not possible. However, the difficulty can be
surmounted by a Lyapunov-Schmidt reduction. This procedure reduces the
problem of finding a subharmonic branch point to the computation of certain
partial derivatives of the projection of the displacement 6 onto the tangen-
tial and normal vector fields along the unperturbed periodic trajectory F.
To obtain some appreciation of the results obtained we must mention two
other functions. First, for the unperturbed system we consider an orthogo-
Lidl trajectory through 0 and define the transition time to be the function
which assigns to each point in some neighborhood of o the minimum time
required for an unperturbed trajectory to return to this orthogonal trajec-
tory. in case 17 belongs to a one parameter family of periodic trajectories of
the unperturbed system, the transition time function is the period function.
(This is the main link between the first year of research on this project that
was devoted to a study of certain aspects of the period function and the
,ur~. , c.r± the e ,of--+,- 3f subh-.-mcir-i.c_.) The ser-Tid function is
a generalization of the subharmoriic Melnikov function that has been used
previously to obtain the existence of subharmonic solutions in the special
case when the unperturbed periodic solution is a member of a one parameter
family of periodic solutions of the unperturbed system. The new function we
require is defined by

C():= [1-JV +M] W

where

a(t) := a(t,) := 1 { [2If1 - curl f} d7,

I I g -
J0 f , g-(s) g ds,
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and where K is the curvature of the unperturbed periodic trajectory. We call
C the subharmonic bifurcation function. In this notation it turns out that a
is the derivative of the transition time map in the direction of the orthogonal
trajectory, 3 is the "characteristic multiplier" for the unperturbed periodic
trajectory, and A4 is the subharmonic Melnikov function. We are now ready
to state a version of our main result.

Theorem 3.1 (Limit Cycle Subharmonic Bifurcation Theorem) Let
E, denote the parameterized family of differential equations

= f(x) + fg(x, t), x E R2 , E E R,

such that Eo has a limit cycle r whose period is in resonance with the q-
periodic external force g(x, t), i. e. , there are relatively prime natural num-
bers m and i, such that the period of F is mrq/n. If E r is a simple zero
of the subharmonic bifurcation function C, i. e. , C( ) = 0 and dC(f)( ) $ 0.
and if a( ) 5 0, then is a subharmonic branch point.

From the point of view of "pure" mathematics, the result is important
because it g:ves a rigorous new method of justifying the existence of fami-
lies of subharmonics. it is particularly satisfying to have a proof that rests
firmly on the Implicit Function Theorem. From the point of view of new
understanding. the result is very nir- because it makes clear the role played
by the derivative of the transition time, given by ct(), as a nondegeneracy
condition for the bifurcation to subharmonic solutions and thus relates the
subharmonic bifurcation problem to general results for the transition time
functions of dynamical systems. From the point of view of applications, the
result is useful because the bifurcation function C is given quite explicitly in
terms of geometric quantities along the free oscillation of the unperturbed
system. We also note that the theorem reduces to the classical case when the
periodic trajectory of the unperturbed system belongs to a one parameter
family of periodic trajectories. This is easy to see because in this case the
"characteristic multiplier" /3 is unity and therefore C = M, i.e., the bifurca-
tion function C reduces to the subharmonic Melnikov function. The classical
case will occur, for example, when the unperturbed system is Hamiltonian.

8



Our motivation for extending the us~ial Melnikov theory to the case when
the unperturbed periodic trajectory is a limit cycle is our desire to obtain
the subharmonic response for a wider class of systems than those which can
be analyzed by the classic Melnikov theory. In particular, oui theory is
applicable to systems modeled by equations of van der Pol type. A ty pical
example is provided by a system of the form

U V ,

V = -U + a(i -u')v
I, = Ty.

Y= (-x + a(1 - x2 )y) + u

where a, -r and e are real. Here, we view the x-y system as our dyPamical
system with the excitation provided by the u-v system via the coupling term
cu added to the x-y system. For c = 0, a > 0 and r > 0, the x-y system has a
stable limit cycle as its free oscillation. If, in addition, r is a rational number,
then when t $4 0 the x - y system is excited by the resonant periodic output
t -* u(t) of the t, - v system. The subharmonic response of the system, foi
small (, can be determined by applying the theorem. For a simple example,
take a = 2 and 7 = 1 so there is a 1 : 1 resonance. It can be shown using
the theorem that there are two subharmonic branch points. One branch
corresponds to a family of stable periodic solutions of the excited x - y system
parameterized by c with each periodic solution of the family having the same
period as the excitation (harmonic response entrained to the frequency of
the unperturbed oscillation) while the other branch is a branch of unstable
harmonics.

4 Research During Extension Period

During the final phase of the research the main focus has been a continuation
of the work on subharmonic bifurcations completed during the second year
of the project. In addition, a result on the finiteness of the number of critical
points of the period function for an analytic vector field has been obtained. In
order to describe the results, we will use some of the notation and terminology
introduced in previous sections.

In §2 we described the Limit Cycle Subharmonic Bifurcation Fheorem
obtained during the second year of the project. Perhaps the most important

9



result of the 'extension period" is a much stronger version of tils theorem. For
the statement of the theorem v'e require a modification of the definition of
the bifurcation function which we previously denoted as C. The new fu nction
we require is defined by

C(f) := [(1 - 3).V + OA] (f).

We call C the subharmonic bifurcation function. The strengthened theorem
applies either when the unperturbed period orbit F is hyperbolic or when.
at the bifurcation point, the derivative of the transit time does not van-
ish. In particular, if we know the periodic orbit is a hyperbolic limit cycle
(the generic case) the nondegeneracy condition of the previous version of the
theorem can be eliminated. Formally, we can state the new version of the
theorem as follows:

Theorem 4.1 (Limit Cycle Subharmonic Bifurcation Theorem) Lct
E, denote the parameterized family of differential equations

k = f(x) + Cg(x, t) + e6gR(x, 1, e), x C R 2, e 6C R,

such that Eo has a limit cycle F whose period is in resonance with the r7-
periodic external force G(x,t,fe) := g(xt) + zg,(xt,c), i. e. , there are
relatively prime natural numbers rn and n such that the period of F is mri/n.
If F is hyperbolic and E C F is a simple zero of the subharmonic bifurcation
function C, i. e. , C( ) = 0 and dC(f)( ) $ 0, then is a subharmcnic branch
point. Also, if _ F is a simple zero of the subharmonic bifurcation function
and if o( ) 5 0, then is a subharmonic branch point.

In view of the usual subharmonic bifurcation theory, where the unper-
turbed periodic orbit is contained in a one-parameter family on periodic
trajectories and where the non vanishing of the derivative of the period func-
tion is the appropriate nondegeneracy condition for a bifurcation point to
be a subharmonic branch point, we see that there is an interplay between
the two types of degeneracy given by the number of vanishing derivatives
of the transit time function and the multiplicity of the periodic trajectory.
Actually, a theory can be developed to handle all the possible degeneracies.
The simplest versions of the appropriate results in the next most degenerate
cases are reasonably easy to state.
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For these cases there is the possibility that more than one family of sub-
harmonics is found near a subharmonic branch point. We will say E F is a
subhar-monic branch point with n-branches if there is aD co > 0 and distinct
(germs of) curves (at c = 0), 6 -f Oak(f); k = 1,..., n, each defined either for
E0 < f < 0, or for 0 < e < Co, and each with image in the section E, such
that 0k(0) = and (Ok(E), 0) 0. The next theorem gives the result for the
case of the period annulus.

Theorem 4.2 (Order 2 Subharmonic Bifurcation Theorem) Let E, de-
note the parameterized family of differential equations

5 = f(x) + eg(x, t) + E2gt(x, t,e), x E R 2 , e E R,

such that E0 has a period annulus A and a periodic trajectory F C A that is
in resonance with the it-periodic external force G, i. e. , there are relatively
prime natural numbers m and n such that the period of F is mr/n. If F is
critical (a( ) - 0) and if E F is a simple zero of the subharmonic Melnikov
function, such that

./'( )dr( )f -L( ) _7 0,

then is a subharmonic branch point with two branches. Moreover, these
two branches exist only in the direction of E such that

/( )da( )f'( ) < 0.

In the limit cycle case we have the analogous theorem.

Theorem 4.3 (Order 2 Limit Cycle Subharmonic Bifurcation Theorem)
Let E, denote the parameterized family of differential equations

5 = f(x) + Eg(x, t) + e2gR(x, t, E), X E R2 , c E R,

such that E0 has a periodic trajectory F C A that is in resonance with the
ri-pt )dic external force G, i. e. , there are relatively prime natural numbers
m and n such that the period of F is mit/n. If E F is such that follow-
ing three conditions are satisfied: (i) a( ) = 0 and 0( ) = 1, (ii) either

M( )d3( )f '(G) :€ 0 or A/( )da( )f±( ) # 0, and (iii) E F is a simple
zero of the bifurcation function

E : (l)df(l)f±( ) - (

11



then is a subharmonic branch point with two branches. Moreover, these
two branches exist, in case .($)d#( )fL( ) :A 0, only in the direction of e
such that

cMd( )d#( )fU-( ) < 0

and, in case V( )da( )f'( ) $ 0, only in the direction of c such that

cX/( )da( )f±( ) < 0.

As an application of the Order 2 Limit Cycle Subharmonic Bifurcation

Theorem consider the oscillator E, given by

i = y -x(1- x 2 - y2)2 - Ecost, =-x -y(1- x 2 - y2 )2 +c sint.

which has the form
k = f(x) + Eg(t).

Here, the unperturbed system has a (semi-stable) multiplicity 2 limit cycle
F on the unit circle. The corresponding integral curve of E0 starting at

(I2)is

x(t) = 1 cos t + 2 sin t, y(t) = - j sin t + 2 cos t.

To apply the theorem, one can compute all of the.geometric quantities ex-
plicitly. In particular, with respect to the coordinate E (i, 2) E F,

a(t, ) 0 da( )f- (') = 0,

i3( ) = 1, d#( )f-( ) = 16r.

Also,

M W( = j ysint - xcostdt -27r 1

'D( ) = -32r 2 6.

Thus, 1) has a simple zero along F at (±1,0) and, since the only zeros of
d( )d#( )fz( ) are the points (0,±), the theorem shows each of the bi-

furcation points is a subharmonic bifurcation point with two branches. At
(-1,0) the harmonics exist for sufficiently small e > 0 while at (1,0) they
exist for sufficiently small E < 0.

12



The final result we mention is the finiteness result for the number of
critical points of the period function for an analytic vector field. This question
arises from our study of critical points of the period function in relation to the
bifurcation theory just described and in relation to the solutions of boundary
value problems as described in §1. There are a number of different results
which are formalized in the preprint Finiteness for Critical Periods of Planar
Analytic Vector Fields, but perhaps the sharpest result is the following. We
consider the finiteness problem for the important class of plane polynomial
vector fields given as classical one degree of freedom Hamiltonian vector fields
when the potential energy is a polynomial of degree N. In particular, assume
the Hamiltonian has the form

H(x,y) = + V(x)
2

where
V(x) = ao + alx + + aNx.

The Hamiltonian vector field is then given by the differential equations

aH aH I
=- = -y = V'(x).

Theorem 4.4 If a one degree of freedom Hamiltonian system with a poly-
nomial potential has infinitely many critical periods, then the potential is
quadratic and the Hamiltonian system is linear.

The theorem and the ideas contained in its proof can be used to show
the following: If a two point boundary value problems of either Dirichlet or
Neumann type for the equation

-i + V'(x) = 0,

where the potential V is a polynomial, has infinitely many solutions with a
specified number of nodes, then the equation must be linear.

5 Publications
The following publications are a direct result of the research project to date.
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1. Carmen Chicone and Marc Jacobs, Bifurcation of critical periods for
plane vector fields, Transactions of the American Mathematical Society,
312(1989), 433-486.

2. Carmen Chicone and Marc Jacobs, On a computer aided proof in bi-
furcation theory, Computer Aided Proofs in Analysis, K. Meyer and D.
Schmidt Eds., IMA Volumes in Mathematics and Its Applications, Vol
28, Springer-Verlag, New York, 1991, 52-70.

3. Carmen Chicone and Marc Jacobs, Bifurcation of limit cycles from
quadratic isochrones, Journal of Differential Equations, 91(1991), 268-
327.

4. Carmen Chicone, Bifurcations of nonlinear oscillations and frequency
entrainment near resonance, submitted for publication.

5. Carmen Chicone and Freddy Dumortier, Finiteness for Critical Periods
of Planar Analytic Vector Fields, submitted for publication.

6 Interactions

Most of the results of this research project have been presented at profes-
sional meetings and invited addresses at universities. In fact, the following
presentations have been given by PI C. Chicone as a direct result of the
research project.

1. Bifurcation of critical periods of plane vector fields, University of Cincin-
nati, November 1988.

2. The period function for plane vector fields, Limburgs Universitair Cen-
trum, Diepenbeek, Belgium, January 1989.

3. The problem of the isochrone, Limburgs Universitair Centrum, Diepen-
beek, Belgium, January 1989.

4. The period function for planar Hamiltonians, Limburgs Universitair
Centrum, Diepenbeek, Belgium, February 1989.

5. Bifurcation of period functions, Dynamical Systems Conference, Delft,
The Netherlands, January 1989.
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6. Bifurcation of period functions, Universit6 de Bourgogne, Dijon, France,
March 1989.

7. Bifurcation of plane vector fields, Computer Aided Proofs in Analysis,
Cincinnati, Ohio, March 1989.

8. Bifurcation of plane vector fields, Workshop on Qualitative Theory of
Vector Fields, Universit6 de Montr6al, August 1989.

9. Bifurcation from isochrones, CIRM Conference on Bifurcation and Pe-
riodic Orbits of Plane Vector Fields, Luminy, France, September 1989.

10. Bifurcation of limit cycles for plane vector fields, 19 th Midwest Differ-
ential Equations Conference, Rolla MO, October, 1990.

11. Bifurcations of nonlinear oscillations, Midwest Dynamical Systems Con-
ference, Northwestern University, Evanston, March 1991.

12. Bifurcation of subharmonics, Northwestern University, Evanston, June
1991.
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